
COMMENT
10.1002/2013WR014812

Comment on ‘‘A blueprint for process-based modeling of
uncertain hydrological systems’’ by Alberto Montanari and
Demetris Koutsoyiannis
Grey Nearing1

1NASA Goddard Space Flight Center, Greenbelt, Maryland, USA

Montanari and Koutsoyiannis [2012] (hereafter referred to as MK) offer an excellent discussion of the funda-
mental role of epistemic uncertainty in hydrologic modeling. They point out that epistemic uncertainty is
unavoidable, and that ‘‘one of the most comprehensive, elegant and complete ways of dealing with uncer-
tainty is provided by the theory of probability.’’ In fact, we know from Cox’s [1946] theorem that probability
theory provides the only method for quantifying epistemic uncertainty that is consistent with certain basic
principles of logic [Howson and Urbach, 1989; Rathmanner and Hutter, 2011; Van Horn, 2003].

MK claim to have avoided the need to evaluate a likelihood function during Monte Carlo Bayesian uncer-
tainty propagation by estimating and sampling a distribution over model error directly. I will show that they
have not actually avoided likelihood evaluation, but that their method nevertheless offers very meaningful
insight into the fundamental issues associated with applying probability theory to estimate epistemic uncer-
tainty. I argue that there are three such issues: subjectivity, nonstationarity, and dimensionality (explained
presently), and the purpose of this comment is to point out that, although it is possible to construct meth-
ods that avoid likelihood evaluation, this objective is something of a red herring and does not address the
fundamental issues. Because rigorous efforts to estimate uncertainty will necessarily be built on Kolmogor-
ov’s [1956] axioms, it is important that we understand and are explicit about the core issues.

MK propose to ‘‘estimate[e] the probability distribution of the output from a process-based (deterministic)
hydrological model.’’ Their main result is that the probability of the true value of a hydrologic variable to be
predicted, Q, can be estimated from deterministic model S as (MK’s equation (8)):

fQ Qð Þ5
ðð

fe ejH; Xð ÞfH Hð ÞfX Xð ÞdHdX; (1)

where H are model parameters, X are model inputs, e5Q2S H; Xð Þ are model residuals, and f� are proba-
bility distributions. Notice that the right-hand side gives a distribution over e, and equality results from the
fact that the mapping from Q to e is bijective for any given H and X . MK use Monte Carlo integration to
marginalize over H and X .

A ubiquitous example of applying (1) with Monte Carlo integration to turn deterministic models into sto-
chastic models is in ensemble data assimilation, where fQ represents a Bayesian prior distribution over the
current state of a dynamic system estimated as the sum of a deterministic model prediction plus random
error [Evensen, 2003; Nearing et al., 2012; Reichle et al., 2008; Vrugt et al., 2006, 2005]. Isolated application of
(1) is not particularly useful because it requires a priori knowledge of all model components (e.g., e, H, and
X); if we know the necessary distributions, then (1) is simply the chain rule. Data assimilation deals with this
by conditioning fQ directly on some observation data D using Bayes’ law. (Incidentally, MK state that ‘‘[l]ikeli-
hood computation might . . . be avoided by using data assimilation,’’ however, it should be noted that data
assimilation is a Bayesian method and therefore requires a likelihood function in the form of an observation
operator [van Leeuwen, 2010; Wikle and Berliner, 2007] that suffers from the standard issues [Snyder et al.,
2008; Zupanski, 2005].)

Another way to condition on data is to use fHjD HjDð Þ and fejD ejH; X;Dð Þ to obtain:

fQjD QjDð Þ5
ðð

fejD ejH;X;Dð ÞfHjD HjDð ÞfX Xð ÞdHdX: (2)

MK notate their method as (1) but actually employ (2). Although a number of studies advocate considering
parameter uncertainty, forcing uncertainty, and simulator discrepancy as the major components in an
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uncertainty forecasting paradigm [e.g., Liu and Gupta, 2007; Wagener and Gupta, 2005], to my knowledge,
no previous study has actually implemented (2). For example, Wilkinson et al. [2011] sampled fejD for a single
realization of parameters and inputs, and Harrison [2007] sampled fejD and marginalized over fHjD, but did
not consider input uncertainty explicitly. Beven and Binley [1992] marginalized over fHjD, but did not sample
model error or explicitly consider input uncertainty.

MK note problems with many existing methods for estimating total uncertainty over deterministic model
predictions, most of which center around the use of likelihood function. Likelihood was defined by Fisher
[1922] as ‘‘[t]he likelihood of any [set of parameters] should have any assigned value is proportional to the
probability that if this were so, the totality of observations should be that observed.’’ In the context of (2), a
rigorous likelihood function like fDjH DjHð Þ would be a convolution of a model error distribution and an
observation error distribution. MK note that likelihood functions are difficult to develop because ‘‘the com-
plex structure of the model error . . . makes its statistical description complicated,’’ and that they are often
‘‘based on assumptions that may be restrictive in some practical applications, like . . . independence for the
model error.’’ They also note that likelihood functions cause problems during implementation because ‘‘the
likelihood is usually estimated in calibration, . . . but is used to assess uncertainty of out-of-sample predic-
tions.’’ I would also highlight another issue: when likelihood is sampled using large data sets in a Monte
Carlo context, there is, due to the curse of dimensionality [Bellman, 2003], propensity for sample collapse—a
large majority of samples are assigned negligible probabilities [e.g., Snyder et al., 2008]. Therefore, we seem
to have three complications related to the use of likelihood functions: (1) understanding the statistical prop-
erties of model error (subjectivity or the estimation problem), (2) the possibility that these statistical proper-
ties change over time (nonstationarity), and (3) the fact that it is difficult to sample high-dimensional
probability distributions (dimensionality).

MK advocate (1) (actually (2)) as avoiding many of these issues by not requiring evaluation of a likelihood
function. I have two issues with this claim. First, MK evaluate fDjH in their application of DREAM [Vrugt and
Robinson, 2007] to estimate fHjD, and second, that fejD is a likelihood function associated with many of the
issues outlined above. Because the mapping from Q to e is bijective, there exists an f ’

ejD such that
f ’

ejD QjH;X;Dð Þ5fejD ejH;X;Dð Þ, and (2) can be rewritten as:

fQjD QjDð Þ5
ðð

f
0

ejD QjH;X;Dð ÞfHjD HjDð ÞfX Xð ÞdHdX: (3)

The only difference between (2) and (3) is that (3) does not require model error to be additive, although it
applies isomorphically in that case. f

0

ejD (and thus, the equivalent fejD) is a likelihood function according to
Fisher’s definition. It is worth pointing out that although MK call Q ‘‘the true value of the hydrologic variable
to be predicted,’’ they actually estimate a distribution over the discrepancy between model predictions and
observations, and thus their fe implicitly accounts for both model and observation error.

Leaving aside the fact that MK use fHjD in DREAM (this has interesting implications, and we will come back
to it), MK’s use of a likelihood function in the form of fejD differs from the methods they criticize in that they
do not use it to compute the likelihood of any set of observations—instead they sample fejD directly. By not
evaluating fejD, they avoid the problem of sample collapse—all of their samples of e are iid. Further, fejD is
derived directly from data and avoids many of the strong assumptions that are present in the likelihood
functions used by a number of previous studies. Similarly, by conditioning model error on currently avail-
able information (i.e., X and H) MK account for some of the heteroscedasticity in e. In theory, one could
imagine estimating an asymptotically correct, nonparametric fejD purely empirically (as a kernel density
function), and therefore nearly completely alleviating the need for parametric assumptions. In practice,
however, this is impossible due to the curse of dimensionality, and assumptions are necessary. For example,
MK assume e to be independent in time conditional on X and H, but we can imagine a system that evolves
according to a trending or periodic governing process not accounted for by S, and therefore for there to be
some temporal correlation in e independent of X and H. We could condition e on more and different types
of current information, for example, model states [e.g., Wilkinson et al., 2011], which might help further
reduce the impacts of nonstationary model error, but nothing will ensure that statistical properties of model
error discovered during calibration will persist in predictions.
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Because of the dimensionality problem, it is impractical to nonparametrically estimate model error distribu-
tions (e.g., without autocorrelation assumptions), and model error may be nonstationary with respect to any
distribution that we do estimate. MK attenuate these issues but do not alleviate them, and attenuation does
not come from the fact that they do not evaluate fe, but from the fact that fe is semiempirical and condi-
tional on X . The ability to use an empirical fe distribution represents a fundamental advantage over meth-
ods such as GLUE [Beven and Binley, 1992] that need an understanding of model error to derive fHjD;
however, the problem is that we cannot estimate fDjH if we do not know fejD and we cannot estimate fejD if
we do not know fHjD—we really want their joint distribution.

MK argue that it is not strictly necessary to use fDjH to estimate fHjD [Ebtehaj et al., 2010; Srikanthan et al.,
2009], which is true because fundamentally there are two ways to estimate conditional probability distribu-
tions: generatively and discriminatively [Nearing et al., 2013]. Generative methods estimate the joint distribu-
tion via Bayes’ law: e.g., fH;D5fDjHfH, and discriminative methods employ a functional approximation of the
desired conditional: e.g., fHjD HjDð Þ5gD H;Dð Þ. Generative methods require likelihood functions and dis-
criminative methods do not; however, both require estimating at least one function: either gD or fDjH, and
both are inherently subject to the same set of problems: subjectivity, nonstationarity, and dimensionality.
For example, Ebtehaj et al. [2010] generated an ensemble of ‘‘optimal’’ parameter estimates by minimizing
an objective function over bootstrapped samples of calibration data. If the objective function is a (negative-
log) likelihood function, then this method provides a distribution over maximum-likelihood parameter sets
and is generative. If the objective function is not a formal probability measure then the method is discrimi-
native, results do not have a strict probabilistic interpretation, and the method suffers the same problem as
GLUE—a subjective and informal likelihood. We still have not escaped the underlying problems.

A better way to address the problem of simultaneously estimating both fHjD and fejD is to estimate their
joint distribution; in fact, we would like the joint distribution over e, H, and X . Harrison [2007] and Harrison
et al. [2012] estimated the joint distribution over e and H while Bulygina and Gupta [2009, 2010, 2011]
avoided the problem by using (1) to turn a deterministic model into a stochastic model and then condi-
tioned the parameters of the stochastic model directly on data, thereby eliminating the need for a descrip-
tion of model error altogether. No study, to my knowledge, has attempted to build the full joint
distribution.

In conclusion, MK lay out a compelling framework for estimating forecast uncertainty that directly attacks
the central issues related to applying what is unequivocally the correct (Bayesian) method for combining
uncertainty sources. Their approach of using an empirical fejD conditional on current information (X and H)
will certainly help attenuate effects of the major problems related to estimating epistemic uncertainty (sub-
jectivity, nonstationarity, and dimensionality), and is consistent with other sophisticated contemporary
efforts; however, avoiding evaluation of a likelihood function cannot offer fundamental solutions to these
problems. MK’s formulation does not really avoid the need to evaluate a likelihood function, and although
this is possible by simply using discriminative methods to estimate conditional density functions, such a
strategy does not inherently address the underlying issues.
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